学术文献

氢键介导的pH/光响应甲氨蝶呤释放超分子聚合物纳米药物及其化学/光热协同治疗

2024-10-22 分享

Hydrogen Bond-Mediated Supramolecular Polymeric Nanomedicine with pH/Light-Responsive Methotrexate Release and Synergistic Chemo-/Photothermal Therapy

Yanggui Wu, Senbin Chen*, and Jintao Zhu*

Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China

Biomacromolecules 2022, XXXX, XXX, XXX-XXX

Publication Date: September 8, 2022

https://doi.org/10.1021/acs.biomac.2c00717


氢键介导的pH/光响应甲氨蝶呤释放超分子聚合物纳米药物


Abstract

Complete cancer cure and healing are still difficult, owing to its complexity and heterogeneity. Integration of supramolecular forces, for example, hydrogen bonds (H-bonds), to anti-cancer nanomedicine affords new scaffolds for biomedical material decoration, featuring the advantages of dynamic property and easier processability. Here, we target the construction of H-bond-mediated supramolecular polymer micelles, loaded with a chemotherapeutic drug along with a photothermal agent for synergistic chemo-/photothermal therapies (CT/PTT). To do so, we design and synthesize an amphiphilic ABA-type triblock copolymer, bearing H-bonding moiety (barbiturate, Ba) within the middle hydrophobic B block. The presence of pendant Ba moieties within the hydrophobic core promotes the loading capability of methotrexate (MTX) and transportation stability, benefitting from the formation of specific Ba/MTX H-bonding interactions. IR780, a photothermal agent, concomitantly encapsulated via hydrophobic interactions, facilitates the development of a synergistic CT/PTT modalities, where MTX can be released on demand owing to the dissociation of Ba/MTX H-bonding interactions induced by elevated temperature. Such H-bonding nanomedicine possesses enhanced drug loading capacity and transport performance and can also trigger stimuli-responsive drug release in the tumor zone. We believe that H-bonded nanomedicines provide a fine toolbox that is conducive to attaining biomedical requirements with remarkable values in theranostics that are highly promising in clinical applications.